
XXVIII Encontro da Sociedade Brasileira de Acús�ca

3 a 5 de outubro de 2018

Porto Alegre - RS

MICROPHONE ARRAY PROCESSING OF PULSE-DENSITY
MODULATED BITSTREAMS

Ipenza, Sammy Carbajal1; Masiero, Bruno S.2

(1) Dept. of Communications, Campinas State University, sipenza@decom.fie.unicamp.br
(2) Dept. of Communications, Campinas State University, masiero@unicamp.br

RESUMO
Atualmente, os microfones digitais modulados por densidade de pulso (PDM) são amplamente utilizados
em aplicações comerciais, já que esta é uma maneira eficiente de transmitir informação de áudio para
processadores digitais em dispositivos móveis. No entanto, esses microfones digitais requerem custosos
filtros de decimação de alta ordem para converter o fluxo PDM para a modulação por código de pulso
(PCM) usada por estes processadores. Além disso, o estado-da-arte dos algoritmos de processamento
digital de arranjos assumem que os sinais recebido dos microfones sempre está em uma representação
em banda-base. A implementação destes algoritmos em sistemas embarcados, onde os recursos de pro-
cessamento são críticos, ou em circuitos integrados para aplicações específicas (ASIC), onde a energia
consumida e área também são críticas, pode se tornar muito dispendiosa devido ao uso de dezenas de
filtros de decimação para converter os sinais de PDM para PCM. Este trabalho explora as vantagens e
desvantagens de realizar o processamento de arranjo de microfones diretamente nos sinais modulados
em densidade de pulsos ao invés de modulados por código de pulsos. É mostrado que o ruído de quan-
tização, que é moldado para as frequências mais altas nos sinais PDM, não influencia no desempenho
da detecção da fonte do arranjo de microfone e que o processamento no domínio PDM pode consumir
menos recursos de software ou hardware do que o processamento convencional no domínio PCM.

Palavras-chave: PDM, microfones digitais, modulação sigma-delta, processamento de arranjo, beam-
forming.

ABSTRACT
Nowadays, pulse-density modulated (PDM) digital microphones are widely used on commercial appli-
cations as they have become a popular way to deliver audio to digital processors on mobile applications.
However, these digital microphones require costly high-order decimation filters to translate PDM bit-
streams to baseband multi-bit signals on pulse-code modulation (PCM). In addition, the state-of-the-art
of beamforming and array processing algorithms take for granted that the microphones signals are al-
ready converted to PCM representation. The implementation of microphones array algorithms in em-
bedded systems, where processing resources are critical, or in application specific integrated circuits
(ASIC), where power and area are also critical, may become very expensive because of the use of the
tens of decimation filters to convert PDM bitstreams to PCM signals. This work explores the advantages
and disadvantages of processing PDM bitstreams instead of PCM signals for beamforming applications.
It is shown that the quantization noise, which is shaped to the higher frequencies on PDM signals, does
not influence in the microphone array source detection performance and that the array processing in the
PDM domain can consume fewer software or hardware resources than conventional PCM beamforming
processing.

Keywords: PDM, digital microphones, sigma-delta modulation, array processing, beamforming.

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


1. INTRODUCTION

In a digital microphone, a digital transductor converts the audio signal to an electrical signal,
then an internal sigma-delta modulator converts the electrical analog signal to a digital pulse-
density modulated (PDM) bitstream. For audio applications, the PDM bitstream is delivered at
a sampling rate typically in the 1 MHz to 3 MHz range, while the audio or baseband signal is
supposed to be in the 20 Hz to 20 kHz range. The modulator’s order depends on the vendor and
they are generally 2nd or higher order modulators. The modulator shapes the quantization noise
at higher frequencies while the audio signal remains in the baseband range. This quantization
noise shaping is perfomed by analog feedback and oversampling stages within the modulator
with the intention of increasing the signal-to-noise ratio (SNR) at baseband frequencies [1].

In order to get a pulse-code modulated (PCM) audio signal at a lower sampling rate, it is
required to pass the PDM bistream through a decimation filter [2]. This decimation filter is
commonly a Finite Impulse Response (FIR) filter as a linear phase response is required on audio
applications [3].

The decimation filter design depends on the desired audio output quality, improving with a
thinner passband ripple and a higher stop-band attenuation. Unfortunetaly, the number of FIR
filter taps increases when either the passband ripple decreases, stop-band attenuation increases or
transition band decreases. For audio applications, where a passband ripple less than 0.1dB and
a stopband attenuation greater than 80dB is usually required, the number of taps may become
greater than 2500 in case a single-stage decimation filter structure is implemented [4]. Because
of the larger number of taps required to implement a single-stage decimation filter, Cascade
Integrator-Combinator (CIC) filters in a multistage structure [2] are commonly used on filter
design because their simpler architecture does not require multipliers, only adders [5].

Beamformer implementations using many PDM microphones will require greater hardware or
software resources because a decimation filter is required for each microphone input to convert
the PDM bitstream to PCM representation. Because of the quantity of resources required for
beamforming applications, this work proposes alternative beamformer implementation methods
which does not require a decimation filter for each PDM bistream input. These methods are
based on processing the PDM bitstreams without decimate them, performing the processing
at a higher sample rate. In these proposed methods the PDM bitstream is passed directly to
frequency-domain via Fast-Fourier transform (FFT) blocks, then these signals are delayed and
summed accordingly.

For comparison purposes, delay-and-sum beamformers (DAS) were implemented in hardware
and software using these alternative beamforming methods. Then the performance in their
software and hardware implementations is compared with the conventional1 implementation
methods [6][7].

2. CONVENTIONAL DELAY-AND-SUM BEAMFORMER IMPLEMENTATIONS

Delay-and-sum (DAS) beamformer is the oldest and simplest array signal processing algo-
rithm [8]. The underlying idea is to delay each microphone input by an appropiate time and
add them together. In this sense, the audio signal arriving in a determined direction at the array

1Please note that the word "conventional" is used to refer to traditional PCM implementations and not to a
particular type of algorithm, the conventional (or Barlett) beamformer.

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


will be reinforced with respect to other signals arriving from other directions and noise. The
delay-and-sum algorithm can be implemented in time-domain [9] [10], delaying each microphone
input and adding them together; or in frequency-domain using FFT blocks. In this section will
be presented the mathematical basis of the frequency-domain implementation methods.

2.1 One-dimensional FFT beamformer

Given an array of M microphones with time-domain outputs and denoting the mth microphone
output as ym(t).

Lets Ym(ω) denote the Fourier transform of the mth microphone output ym(t). Then the spectrum
of the delay-and-sum beamformer’s output would be

Z(ω) =
M−1

∑
m=0

wmYm(ω)exp(− jω∆m) , (1)

where ∆m is the delay in the mth microphone output ym(t).

In practice, however, Ym(ω) can not be computed because it would require integrating over all
time. So, in order to analyze the time-domain signal in a limited time frame, it is introduced the
concept of short-time Fourier transform

Ym(t,ω) =
∫ t+D

t
w̃(t − τ)ym(τ)e− jωτdτ , (2)

where D is the time frame after the t instant. Here, w̃(t) denotes a finite-duration window defined
over [0,D]. Therefore, Equation 2 can be rewritten as

Ym(t,ω)e jωt =
∫ D

0
w̃(τ)ym(t + τ)e− jωτdτ . (3)

This expression can be interpreted as an approximation of the spectrum at time t in a frame of
length D. Then, the spectrum of the delay-and-sum beamformer’s output will be

Z(t,ω) =
M−1

∑
m=0

wmYm(t,ω)e jωt exp(− jω∆m) . (4)

Even thought Equation 4 is limited in time, it still require to integrate over the time-domain
which is not possible for discrete-time signal processing. Provided that ym[n] is the nth sample
of ym(t) signal sampled at fs = 1/T rate so that t = nT , Equation 2 can be expressed in the
discrete-time-domain as

Ym[n,ω] =
n+Ds−1

∑
l=n

w̃[l −n]ym[l]e− jωT l , (5)

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


where Ym[n,ω] is the discrete short-time Fourier transform of the ym(t) at the instant t = nT and
over the frame time D = DsT provided that Ds is an integer. Here, w̃[n] is also the discrete-time
version of the window function w̃(t) over [0,Ds]. Then the discrete short-time Fourier transform
of the beamformer’s output equals to

Z[n,ω] =
M−1

∑
m=0

wmYm[n,ω]e jωT n exp(− jω∆m) . (6)

If the frequency-domain is discretized so that ωT = 2πv/Ds for v = 0, ...,Ds − 1, Equation 5
can be rewritten as

Ym[n,v]exp
{

j
2πv
Ds

n
}
=

Ds−1

∑
l=0

w̃[l]ym[n+ l]exp
{
− j

2πv
Ds

l
}
. (7)

So the beamformer’s output will be

Z[n,v] =
M−1

∑
m=0

wmYm[n,v]exp
{

j
2πv
Ds

(n−∆m/T )
}
. (8)

Then, if it is defined ỹm[n, l] = w̃[l]ym[n+ l], the DFT of ỹm[n, l] will be

Ỹm[n,v] =
Ds−1

∑
l=0

ỹm[n, l]exp
{
− j

2πv
Ds

l
}
, v = 0, ...,Ds −1 . (9)

Finally, Equations 7 and 8 can be rewritten as

Ym[n,v]exp
{

j
2πv
Ds

n
}
= Ỹm[n,v] , v = 0, ...,Ds −1 , (10)

Z[n,v] =
M−1

∑
m=0

wmỸm[n,v]exp
{
− j

2πv
Ds

∆m

T

}
, v = 0, ...,Ds −1 . (11)

Equation 11 can be implemented in hardware as shown in Figure 1. At first, it is required to
transform PDM bitstreams xm[n] to PCM representation ym[n]. Then each PCM audio signal is
passed through a windowing function w̃[n] to yield ỹm[n]. Each windowed signal is then passed
through a FFT block to obtain Ỹm[n,v]. These frequency-domain signals should be multiplied
by a weighting factor Wm(v) = wm exp

{
− j 2πv

Ds

∆m
T

}
which depends on the desired direction of

arrival. Finally, the weighted outputs are summed together and transformed to time-domain by
an inverse Fourier transform (IFFT).

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


Figure 3a shows the normalized power of an uniform linear array implemented with one-
dimensional FFT beamformer method using 50 microphones (M = 50). Three audio sources of
1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively.

Decimation Filter

PDM
MIC 0

PDM bitstream

Output

Clock
Generator

P
D

M
 c

lo
c
k

R

PDM
MIC 1

R

PDM
MIC 2

R

PDM
MIC "M-1"

R

WeightingWindowing

FFT

FFT

FFT

FFT

IFFT

Figure 1: One-dimensional FFT beamformer implementation method.

2.2 Two-dimensional FFT beamformer

In the same way that one-dimensional FFT beamformer, if it is used an uniform regular array
whose spatial origin occurs at phase begin so that ∆m = αxmd; where d is the space between
microphones, αx = cos(θ) and θ is the angle of arrival; the argument of the exponential in
Equation 11 can be written as

2πv
Ds

∆m

T
=

2πu
M

m , m = 0, ...,M−1 , (12)

where u = 0, ...,M−1. Thus Equations 12 and 9 can be replaced in Equation 11 as

Z[n,u,v] =
M−1

∑
m=0

Ds−1

∑
l=0

wmỹm[n, l]exp
{
− j

2πv
Ds

l
}

exp
{
− j

2πu
M

m
}
. (13)

Finally, if it is defined x[n,m, l] = wmỹm[n, l] = wmw̃(l)ym[n+ l] , Equation 13 can be written as
a two dimensional DFT

Z[n,u,v] = DFT{DFT{x[n,m, l]}} , m = 0, ...,M−1 l = 0, ...,Ds −1 . (14)

Equation 14 can be implemented in hardware as shown in Figure 2. At first, it is required to
transform PDM bitstreams xm[n] to PCM representation ym[n]. Then each PCM audio signal is
passed through a windowing function w̃[n] to yield ỹm[n]. Each windowed signal is then passed
through a FFT block to obtain Ỹm[n,v]. The outputs of those FFT blocks are passed through
another FFT block. Then FFT’s output is passed through a steerer block which, given a desired
angle of arrival θ , filters only the samples meeting the u and v relation defined by Equation 12.
Finally, the steerer’s output is passed through an inverse Fourier transform (IFFT) block.

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


Figure 3b shows the normalized power of a 50-microphones uniform linear array implemented
with the two-dimensional FFT beamformer method. Three audio sources of 1kHz, 3kHz and
5kHz are located at 20, 60 and 110 degrees respectively. The stepped response shown in the
normalized power diagram is due to the small size of the 2nd FFT (N = 50) which limits the
beamformer resolution. This resolution can be improved increasing N so that it would be always
greater or equal than the number of microphones (N ≥ M).

FFT Steerer

Desired

DoA

Decimation Filter

PDM

MIC 0
PDM bitstream

Clock

Generator

P
D

M
 c

lo
c
k

R

PDM
MIC 1

R

PDM
MIC 2

R

R

Windowing

FFT

FFT

FFT

FFTPDM

MIC "M-1"

IFFT
Output

Figure 2: Two-dimensional FFT beamformer implementation method.

(a) One-dimensional FFT method (b) Two-dimensional FFT method

Figure 3: Normalized power of an uniform linear array of 50 microphones (M = 50). Three audio sources of
1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively.

3. PROPOSED DELAY-AND-SUM BEAMFORMER IMPLEMENTATIONS

In this section are proposed two frequency-domain methods that do not require decimation filters.
These methods are merely described here and results are presented and discussed in Section 4.

3.1 One-dimensional bitstream FFT beamformer

Due to the fact that a PDM bitstream has the same information than its converted PCM signal
but with quantization noise shaped at higher frequencies, a PDM bitstreams can be treated as

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


a baseband signals with a higher sampling rate f ′s = R fs, where fs is the required sampling
rate in the beamformer’s output and R is the decimation rate. Therefore, the one-dimensional
FFT beamformer can be modified so that decimation would be performed in frequency-domain
at the end of the beamformer, before the inverse-FFT is applied, as shown in Figure 4. This
implementation method will be called as one-dimensional bitstream FFT beamformer.

Because the input sampling rate is higher than in a conventional DAS beamformer, it is required
a frame length D′

s = RDs i.e. R times larger than the required in conventional implementation
methods.

Figure 6a shows the normalized power of an uniform linear array implemented with an one-
dimensional bitstream FFT beamformer method using 50 microphones (M = 50). Three audio
sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively.

Clock

Generator

R

Frequency-domain

Decimation Filter

PDM

MIC 0
PDM bitstream

P
D

M
 c

lo
c
k

PDM

MIC 1

PDM

MIC 2

PDM

MIC "M-1"
WeightingWindowing

Output
IFFT

FFT

FFT

FFT

FFT

Figure 4: One-dimensional bitstream FFT beamformer implementation method.

3.2 Two-dimensional bitstream FFT beamformer

The two-dimensional bitstream FFT beamformer may be derived in the same way than the
one-dimensional bitstream FFT beamformer, just performing the decimation filtering in the
frequency-domain at the end of the beamformer as shown in Figure 5.

Figure 6b shows the normalized power of an uniform linear array implemented with a two-
dimensional bitstream FFT beamformer method using 50 microphones (M = 50). Three audio
sources of 1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively.

4. RESULTS

4.1 Performace metrics

The metrics to measure the performance of each implementation method will change depending
on either the beamformer is implemented in hardware or software. In software implementation
case, the metric to measure the implementation’s performance would be the processing time; in
hardware implementation case though, the metric would be the hardware logic utilization.

In this sense, a delay-and-sum beamformer was implemented in hardware and software as a
uniform linear array of 8 microphones (M = 8) with distance between microphones d = 8.5mm,
output sampling rate fs = 48kHz, decimation filter with a 5th-order CIC without compensation

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


FFT Steerer

Desired
DoA

R

Frequency-domain
Decimation Filter

Output
IFFT

Clock
Generator

PDM
MIC 0

PDM bitstream

P
D

M
 c

lo
c
k

PDM
MIC 1

PDM
MIC 2

PDM
MIC "M-1"

Windowing

FFT

FFT

FFT

FFT

Figure 5: Two-dimensional bitstream FFT beamformer implementation method.

(a) One-dimensional bitstream FFT method (b) Two-dimensional bitstream FFT method

Figure 6: Normalized power of an uniform linear array of 50 microphones (M = 50). Three audio sources of
1kHz, 3kHz and 5kHz are located at 20, 60 and 110 degrees respectively.

filter structure [5], decimation rate R = 64, frame length Ds = 128 and rectangular windowing.

4.2 Software implementation

The processing time is a metric used to compare methods in a software implementation. However,
the processing time would also depend on the beamformer application. So, it was measured the
processing time of the beamformers working on the following scenarios:

• Spatial filtering, the beamformer is steered at a specific direction-of-arrival, working as
spatial filter.

• Direction-of-arrival detection, the beamformer is steered sequentially in all directions in
order to detect the direction-of-arrival, working as a sonar. In this case, the beamformer
was steered in 256 equally spaced points around the 360 degrees range.

Frequency-domain methods were implemented in Python using Numpy and Scipy libraries,

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


their processing time were then measured on the referred scenarios as shown in Table 1. In this
comparison is shown that on the spatial filtering scenario the one-dimensional bitstream FFT
beamformer has the best performance because decimation is not required in their inputs. However,
the one-dimensional bitstream FFT beamformer has the worst performance in direction-of-arrival
(DoA) detection because FFT needs to be calculated for 256 equidistant points around the 360
degrees range. It is also shown that on the DoA detection scenario the two-dimensional FFT
beamformer has the best performance even thought this method requires decimation in the sensor
inputs. Finally, it is also shown that even thought decimation in the inputs is not required in the
two-dimensional FFT bitstream beamformer, it does not have a good performace on any of the
testing scenarios because of its large FFT processing time.

Table 1: Processing time comparison of one frame of 128-samples length at 48kHz sampling rate, total frame
time of 2.67ms.

Implementation
Method

Input
Decimation
Filter (ms)

FFT (ms)
Spatial

Filtering
(ms)

DoA
Detection

(ms)
1D FFT

beamformer 17.21 0.24 18.54 80.87

2D FFT
beamformer 17.17 1.59 19.26 25.57

1D bitstream FFT
beamformer - 2.03 6.93 3225.02

2D bitstream FFT
beamformer - 233.85 234.37 240.90

4.3 Hardware Implementation

The beamformer described in Section 4.1 was implemented on a FPGA using conventional and
proposed methods. Table 2 summarizes the hardware logic utilization on each implementation
of the mentioned beamformer. In this comparison is shown that the one-dimensional and two-
dimensional FFT beamformer implementation methods require fewer resources than the one-
dimensional and two-dimensional bitstream FFT beamformer methods, the last ones require 60%
more hardware logic. It is shown also that even though the one-dimensional and two-dimensional
bitstream FFT beamformer methods do not require decimation filters in the input, they have
more hardware logic utilization because their FFT logic is almost the double.

Table 2: Comparison of hardware logic utilization. All quantities are expressed in number of hardware logic
modules.

Implementation
Method

Decima-
tion

Filter
1st FFT 2nd FFT Weight-

ing Steerer IFFT Total

1D FFT
beamformer 3038.0 22463.2 - 768.0 - 2807.9 29077.1

2D FFT
beamformer 3038.0 22463.2 2968.5 - 96.0 2807.9 31373.6

1D bitstream FFT
beamformer - 47175.2 - 768.0 - 2807.9 50751.1

2D bitstream FFT
beamformer - 47175.2 2968.5 - 96.0 2807.9 53047.6

DOI: 10.17648/sobrac-87156

http://dx.doi.org/10.17648/sobrac-87156


5. CONCLUSIONS

This article analyzes the conventional beamformer implementation methods and proposes new
approaches as alternatives to them. At first, both conventional and proposed methods were
implemented in software; then they were implemented in hardware, specifically in a FPGA
board.

It has been shown that the one-dimensional bitstream FFT beamformer method being imple-
mented in software for spatial filtering scenarios has better processing time even though its
hardware implementation is more costly. Also it has been shown that the conventional two-
dimensional FFT beamformer is the most efficient software implementation for direction-of-
arrival detection applications.

Finally, even though this research has been focused to analyze the different possible implemen-
tation of delay-and-sum beamformers, the results are also valid for others frequency-domain
beamformers such as Capon’s beamformers [11].

References

[1] J.M. de la Rosa and R. Río. CMOS Sigma-Delta Converters: Practical Design Guide. Wiley - IEEE. Wiley,
2013. ISBN 9781118568439.

[2] L. Milic. Multirate Filtering for Digital Signal Processing: MATLAB Applications: MATLAB Applications.
Premier reference source. Information Science Reference, 2009. ISBN 9781605661797.

[3] Julius O. Smith. Introduction to Digital Filters with Audio Applications. W3K Publishing, 2007. ISBN
978-0-9745607-1-7.

[4] Jon Dattorro. The implementation of recursive digital filters for high-fidelity audio. J. Audio Eng. Soc, 36(11):
851–878, 1988.

[5] Eugene Hogenauer. An economical class of digital filters for decimation and interpolation. 29:155 – 162, 05
1981.

[6] Don H. Johnson and Dan E. Dudgeon. Array Signal Processing: Concepts and Techniques. Simon & Schuster,
Inc., New York, NY, USA, 1992. ISBN 0130485136.

[7] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2009. ISBN 0131988425, 9780131988422.

[8] H. Krim and M. Viberg. Two decades of array signal processing research: the parametric approach. IEEE
Signal Processing Magazine, 13(4):67–94, Jul 1996. ISSN 1053-5888. doi: 10.1109/79.526899.

[9] Jelmer Tiete, Federico Domínguez, Bruno Silva, Laurent Segers, Kris Steenhaut, and Abdellah Touhafi.
Soundcompass: A distributed mems microphone array-based sensor for sound source localization. Sensors, 14
(2):1918–1949, Jan 2014. ISSN 1424-8220. doi: 10.3390/s140201918.

[10] Kim Youngkey, Kang Jungoo, and Lee Myunghan. Developing beam-forming devices to detect squeak and
rattle sources by using fpga. In Inter-noise, pages 1–6, 2014.

[11] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8):
1408–1418, Aug 1969. ISSN 0018-9219. doi: 10.1109/PROC.1969.7278.

DOI: 10.17648/sobrac-87156
Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.17648/sobrac-87156
http://www.tcpdf.org

